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ON NEE'ROOTS OF POSITIVE OPERATORS

by D.R. Brown and M.J. O'Malleyl

A bounded operator A on a Hilbert space H is positive
provided <Ax,x> 2 0 for’'all x € H. These operators are
symmetric, and as such constitute a natural géneralizntion of
non-negative real diagonal matrices. The following result is

thus both well known and not surprising:

Theorem: = A positive operator has a unique positive square root

(under operator composition).

This may be established by integration of the correct
function, invoking the spectral theorem for self-adjoint operators.

A mnore accessible argument for those not acquainted with the mysteries
of spectral measures may be found in [1,p.317].

While square roots aﬁd their iterates seem to provide a sufficient
analytic tool for most purposes, it is also a (folk) theorem that
positive operators possess unique positive 1’r9l roots for every
positive integer n. As in the n = 2 case, existence follows from an
application of the spectral theorem; however, we‘giQe an argument in the
spirit of [1]. The purpose in so doing is not to exercise the reader's
knowledge of induction, but rather to illustrate another use of the Law of

the Mean as a motivational instrument.

1) Both authors received partial support under NASA contract NAS-9-15000.
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Let I be the identity operator on H, and let B(H)
denote the set, of bounded operators on H. We will need

the following properties of positive operators:

(1) the relation on positive operators defined t- A 5 B

if and only ;f_.B -~ A 1is positive, is reflexive,
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A
for any positive A; moreover, this relation is pre-
served by operator addition and positive real scalar
multiplication, and reversed by negative scalar
multiplication.

(2) If A and B are positive and if AB = BA, then AB is
positive.

(3) If 0 <A £71, them 0 I-A s I.

(4) If 054, then Ax [[AlII, so that (IIal)7!a =1, 1f A =0.

(5) If O

1A

A Z I, then A" £ A for all positive integers n.

We also require:

Lemma. I1f {S } is a scquence in B(H) such that 0 £ S £ S
n n n+l
£ I, then there exists S € B(ll) such that {Snu} + Su for

all u € H.

All of the conclusions abové are verified by straightforward

arguments in [1,pp. 317-3207.

Theorem: Let A € B(H), 0 £ A, and let k be a positive integer.

‘ : k
Then there exists a unique positive operator B such that B = A.

Proof: By (4) above, we neced only consider the case in which A g T.
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We first prove the existence of B. . Since the theorem is a tautology
for all operators when k = 1, we assume the existence of positive
(k—l)—st roots for all positive operators.

Under the momentary suppaosition that B 'exists, let

R=1-A and S=1- B. Then (I - S)k

I - R, so that
- ko k r.r
(*) s= (/0 R+ 2, D",

Clearly the existence of a positive operator satisfying this
implicit relation is necessary and sufficient to establish the
existence of the desired operator B. To this end, we define a

sequence of operators b S- =20, S = (1/k) [R + E (¥)(—l)r5r]
¢ Yy % > “n+l _ r=2 n' °

Tn order to.show Sn = Sn+l it suffices to show, under the assumption

< < < < - =
0 =S8 £S =£1I, that 0 % Sn+1 Sn

k
W/ [ E,® DTt - s

n--l)J *

To accomplish this, we digress to a consideraticn of the

k i
polynomial . f(x) = réz(%)(—l)rxr = (l—-x)k + kx - 1. Since

Since f'(x) =k [1 - (1 - x)k—lj

ny

0 on [0,1], clearly f is
inereasing on this interval. To translate this to operators, it is
necessary to examine the situation more carefully. By the Mean Value
Theorem, given 0 s y <z £ 1, there exists a (unique) number c¢ € (y,z)

such that

(k%) £(z) - £(y) = £'(c) (z - y)

K1 .y 1/(k-1)
Upon solving, ¢ =1 - [(1/k) rgo a1 - y)k r 1(l - 2)"]
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Returning to our operator problem, we wish to apply this
information Lo the sequence {Sn}. Since all members of this
“family are polynomials in R =1 - A, any two of them commute.
This is a property sufficient to permit imitation of equation (**)
with operators; let =z = Sn , Yy = Sn—l' In this.format, we use C
to represent the operator .1 - J, where J is (any) positive

k-1 k-r-1

k r
(k-1)st root of the operator (1/k) rzo (1 - Sn—l) (I - Sn) .

The following chain of ecqualities is easily calculated:

S 41 = S, = (/K)(E(s) - £(5. 1))

= /KT - @ -0 s -5 )

(1 - (T- c)k'l]-(sn -5 )

n~-1

1}

(1 - Jk'lj‘(s -5 )
n

n-1

f

k-1 —_—y
(1 - (/) Iy (=) a-s TS, ~ 5 )

By application of remarks (2), (3) and (5), the assumption of

existence of (k-1)st roots, and the inductive hypothesis . S

172N

n-1 % Sn’

the latter operator product exists and is positive. Hence Sn p Sn+l’
and the sequence {Sn} is increasing. Of course, the Law of the Mean
is not applicable in this setting, nor is it used other than to motivate
the choice of €. Indeed, the discerning réader will note that the
extremés of ‘the chain above may be shown tovbe equal withoﬁt‘the

introduection of . C. However, the rather unusual factorization of

Sn+l - Sn would be more difficult to discover without the example
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furni .:d by the dezfvetive in the real function situation.
To invoke .the l.emma and complete the proof of existence of
th
k— roots, it remalns to show S

I for all. n. Assuming

0

A

S £ 1, we have kS§ = E r)( 1) =R-1I+4+%kS + (I - S )k
m n+ = m m

By remark (5), (1 - Sm)k s1I-~ Sm; therefore

R+KkS - I+ (I-5)Y < R+4KkS -I+TI-S5
m m m m

[12,

I + (k~l)Sm £ kI. Hence

kS ] S £ kI and Sm+l £ I, as desired. Thus, the Lemma gives an
operator as in (*), and I - S =B 1is a ksh root of A,

In order to prove the uniqueness of avpositive kEh root of A,
we first observe that if T is any positive kEE rgot of A, then T
must perforce commute with A, hence with I - A =

R, hence with each

Sn’ and thus with S and I -'S =B. Let u € H, v = (B-T)u.

Ck k=1 e re
Then 0 = < (B*-T%)u,v> = (L, 87717 (B-mu,v > = NI <8 Ty v s,
Since B and T commute, 0 ¥ k £-1 r’ whence <Bk_r-lTrv,v> = 0,

r=0,1,...,k-1. Let Fr be any positive (hence symmetric) square root

of kar—lTr. Then IiFrvH2 = <Frv;Frv:>= <F2v,v=>='0, so that

Frv = 0 and Bk-r—lTrv = Fiv = 0. Therefore k - lTr(B T)u =

or Bk~rTru = Bk-r-lTr+lu, r = 0,1,...k-1. In particular, for

r = k-1, BTkml = Tk. Multiplying by T, we have Bk+l = BA = BTk = Tk+l.

If k =2, the argument ébove shows Bv =0 = Tv, whence
II(B—T)uH2 = <(B¥T)2u,u7*= <(B~-T)v,u>= 0. Hence Bu = Tu for all
u € H, "and B is thus unique. Now assume all positive roots, of order

less than k, for positive operators are unique. If k = 2j, then

H% = 8% - p* = 1 = 09)2, whence B =19 and thus B =7T. If

-k is odd, we have shown above that Bk+l = Tk+l, so, by the even



exponent argument, again B = T. This completes the proof.
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